6 research outputs found

    The role of verb semantics in Hungarian verb-object order

    Get PDF
    Hungarian is often referred to as a discourse-configurational language, since the structural position of constituents is determined by their logical function (topic or comment) rather than their grammatical function (e.g., subject or object). We build on work by Komlósy (1989) and argue that in addition to discourse context, the lexical semantics of the verb also plays a significant role in determining Hungarian word order. In order to investigate the role of lexical semantics in determining Hungarian word order, we conduct a large-scale, data-driven analysis on the ordering of 380 transitive verbs and their objects, as observed in hundreds of thousands of examples extracted from the Hungarian Gigaword Corpus. We test the effect of lexical semantics on the ordering of verbs and their objects by grouping verbs into 11 semantic classes. In addition to the semantic class of the verb, we also include two control features related to information structure, object definiteness and object NP weight, chosen to allow a comparison of their effect size to that of verb semantics. Our results suggest that all three features have a significant effect on verb-object ordering in Hungarian and among these features, the semantic class of the verb has the largest effect. Specifically, we find that stative verbs, such as fed 'cover', jelent 'mean' and övez 'surround', tend to be OV-preferring (with the exception of psych verbs which are strongly VO-preferring) and non-stative verbs, such as bírál 'judge', csökkent 'reduce' and csókol 'kiss', verbs tend to be VO-preferring. These findings support our hypothesis that lexical semantic factors influence word order in Hungarian

    The NCTE Transcripts: A Dataset of Elementary Math Classroom Transcripts

    Full text link
    Classroom discourse is a core medium of instruction -- analyzing it can provide a window into teaching and learning as well as driving the development of new tools for improving instruction. We introduce the largest dataset of mathematics classroom transcripts available to researchers, and demonstrate how this data can help improve instruction. The dataset consists of 1,660 45-60 minute long 4th and 5th grade elementary mathematics observations collected by the National Center for Teacher Effectiveness (NCTE) between 2010-2013. The anonymized transcripts represent data from 317 teachers across 4 school districts that serve largely historically marginalized students. The transcripts come with rich metadata, including turn-level annotations for dialogic discourse moves, classroom observation scores, demographic information, survey responses and student test scores. We demonstrate that our natural language processing model, trained on our turn-level annotations, can learn to identify dialogic discourse moves and these moves are correlated with better classroom observation scores and learning outcomes. This dataset opens up several possibilities for researchers, educators and policymakers to learn about and improve K-12 instruction. The data and its terms of use can be accessed here: https://github.com/ddemszky/classroom-transcript-analysi

    Kid-Whisper: Towards Bridging the Performance Gap in Automatic Speech Recognition for Children VS. Adults

    Full text link
    Recent advancements in Automatic Speech Recognition (ASR) systems, exemplified by Whisper, have demonstrated the potential of these systems to approach human-level performance given sufficient data. However, this progress doesn't readily extend to ASR for children due to the limited availability of suitable child-specific databases and the distinct characteristics of children's speech. A recent study investigated leveraging the My Science Tutor (MyST) children's speech corpus to enhance Whisper's performance in recognizing children's speech. They were able to demonstrate some improvement on a limited testset. This paper builds on these findings by enhancing the utility of the MyST dataset through more efficient data preprocessing. We reduce the Word Error Rate (WER) on the MyST testset 13.93% to 9.11% with Whisper-Small and from 13.23% to 8.61% with Whisper-Medium and show that this improvement can be generalized to unseen datasets. We also highlight important challenges towards improving children's ASR performance. The results showcase the viable and efficient integration of Whisper for effective children's speech recognition
    corecore